Sign Up to like & get
recommendations!
0
Published in 2020 at "Bulletin of the Malaysian Mathematical Sciences Society"
DOI: 10.1007/s40840-020-00974-z
Abstract: In this paper, we study the following Chern–Simons–Schrodinger equation $$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle -\Delta u+\omega u+\lambda \Big (\frac{h^{2}(|x|)}{|x|^{2}}+ \int _{|x|}^{+\infty }\frac{h(s)}{s}u^{2}(s)\hbox {d}s\Big )u=g(u) \quad \text{ in }\ {\mathbb {R}}^{2},\\ \displaystyle u\in H_r^1({\mathbb {R}}^{2}), \end{array}\right. }…
read more here.
Keywords:
changing solutions;
chern simons;
solutions chern;
asymptotically linear ... See more keywords