Sign Up to like & get
recommendations!
0
Published in 2021 at "Opuscula Mathematica"
DOI: 10.7494/opmath.2021.41.4.489
Abstract: Let \(n\in\mathbb{N}^{*}\), and \(N\geq n\) be an integer. We study the spectrum of discrete linear \(2n\)-th order eigenvalue problems \[\begin{cases}\sum_{k=0}^{n}(-1)^{k}\Delta^{2k}u(t-k) = \lambda u(t) ,\quad & t\in[1, N]_{\mathbb{Z}}, \\ \Delta^{i}u(-(n-1))=\Delta^{i}u(N-(n-1)),\quad & i\in[0, 2n-1]_{\mathbb{Z}},\end{cases}\] where \(\lambda\) is…
read more here.
Keywords:
difference operator;
order;
spectrum discrete;
order difference ... See more keywords