LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multipurpose cellulases of Promicromonospora sp. VP111, with broad substrate specificity and tolerance properties.

Photo by slaiden from unsplash

Cellulolytic actinobacterium, Promicromonospora sp. VP111 concomitantly produced cellulases (CELs), xylanase and pectinase when grown on commercial cellulose and untreated agricultural lignocellulosic residues (wheat straw and sugarcane bagasse). Secreted CELs hydrolyzed… Click to show full abstract

Cellulolytic actinobacterium, Promicromonospora sp. VP111 concomitantly produced cellulases (CELs), xylanase and pectinase when grown on commercial cellulose and untreated agricultural lignocellulosic residues (wheat straw and sugarcane bagasse). Secreted CELs hydrolyzed (enhanced with Co2+ ion) multiple cellulosic substrates, including sodium carboxymethyl cellulose (Na-CMC), Whatman filter paper no. 1, microcrystalline cellulose (avicel), p-nitrophenyl-β-D-glucopyranoside (pNPG), laminarin, and cellulose powder. The CELs showed stabilities in the presence of various chemicals, including glucose (0.2 M), detergents (1%, w/v or v/v), denaturants (1%, w/v or v/v), and sodium chloride (NaCl, 30%, w/v). The CELs were fractionated using ammonium sulfate precipitation and dialysis. Activities (%) of fractionated CELs were retained at 60°C for endoglucanase/carboxymethyl cellulase (CMCase) (88.38), filter paper cellulase (FPase) (77.55), and β-glucosidase (90.52), which indicated of thermo-stability. Similarly, the activities (%) for CMCase (85.79), FPase (82.48), and β-glucosidase (85.92) at pH 8.5 indicated of alkaline-stability. Kinetic factors, Km and Vmax for endoglucanase component of fractionated CELs were 0.014 g/l and 158.23 µM glucose/min/mL, respectively. Fractionated CELs yielded activation energies (kJ/mol) of 17.933, 6.294, and 4.207 for CMCase, FPase, and β-glucosidase activities, respectively in linear thermostable Arrhenius plots. Thus, this study reports on the multipurpose CELs from an untreated agricultural residue utilizing Promicromonospora in relation to broad substrate specificity, halo-tolerance, alkaline-tolerance, detergent-tolerance, thermo-tolerance, organic solvent-tolerance, and end product-tolerance.

Keywords: substrate specificity; tolerance; promicromonospora vp111; broad substrate

Journal Title: Journal of basic microbiology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.