LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Periodic Operation of a Dynamic DNA Origami Structure Utilizing the Hydrophilic-Hydrophobic Phase-Transition of Stimulus-Sensitive Polypeptides.

Photo from wikipedia

Dynamic DNA nanodevices are designed to perform structure-encoded motion actuated by a variety of different physicochemical stimuli. In this context, hybrid devices utilizing other components than DNA have the potential… Click to show full abstract

Dynamic DNA nanodevices are designed to perform structure-encoded motion actuated by a variety of different physicochemical stimuli. In this context, hybrid devices utilizing other components than DNA have the potential to considerably expand the library of functionalities. Here, the reversible reconfiguration of a DNA origami structure using the stimulus sensitivity of elastin-like polypeptides is reported. To this end, a rectangular sheet made using the DNA origami technique is functionalized with these peptides and by applying changes in salt concentration the hydrophilic-hydrophobic phase transition of these peptides actuate the folding of the structure. The on-demand and reversible switching of the rectangle is driven by externally imposed temperature oscillations and appears at specific transition temperatures. Using transmission electron microscopy, it is shown that the structure exhibits distinct conformational states with different occupation probabilities, which are dependent on structure-intrinsic parameters such as the local number and the arrangement of the peptides on the rectangle. It is also shown through ensemble fluorescence resonance energy transfer spectroscopy that the transition temperature and thus the thermodynamics of the rectangle-peptide system depends on the stimuli salt concentration and temperature, as well as on the intrinsic parameters.

Keywords: dna origami; dynamic dna; transition; structure

Journal Title: Small
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.