Sex hormone-binding globulin (SHBG) is a binding protein that regulates the availability of steroid hormones in the plasma. Although best known as a steroid carrier, recent studies have associated SHBG… Click to show full abstract
Sex hormone-binding globulin (SHBG) is a binding protein that regulates the availability of steroid hormones in the plasma. Although best known as a steroid carrier, recent studies have associated SHBG in modulating behavioral aspects related to sexual receptivity. Among steroids, estradiol (17β-estradiol, oestradiol or E2), documented as the most active endogenous female hormone, exerts important physiological roles in both reproductive and non-reproductive functions. In this framework, we employed molecular dynamics (MD) and docking techniques for quantifying the interaction energy between a complex aqueous solution, composed by different salts, SHBG and E2. As glucose concentration resembles measured levels in diabetes, special emphasis was devoted to analyzing the interaction energy between this carbohydrate, SHBG and E2 molecules. The calculations revealed remarkable interaction energy between glucose and SHBG surface. Surprisingly, a movement of solute components toward SHBG was observed, yielding clusters surrounding the protein. The high energy and short distance between glucose and SHBG suggests a possible scenario in favor of a detainment state between the sugar and the protein. In this context, we found that glucose clustering does not insert modification on binding site area nor over binding energy SHBG-E2 complex, in spite of protein superficial area increment. The calculations also point to a more pronounced interaction between E2 and glucose, considering the hormone immersed in the solution. In summary, our findings contribute to a better comprehension of both SHBG and E2 interplay with aqueous solution components.
               
Click one of the above tabs to view related content.