LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Naringenin Upregulates AMPK-Mediated Autophagy to Rescue Neuronal Cells From β-Amyloid (1–42) Evoked Neurotoxicity

Photo from wikipedia

Deposition of an amyloid-β peptide is one of the first events in the pathophysiology of Alzheimer’s disease (AD) and is clinically characterized by Aβ plaques, tau tangles, and behavioral impairments… Click to show full abstract

Deposition of an amyloid-β peptide is one of the first events in the pathophysiology of Alzheimer’s disease (AD) and is clinically characterized by Aβ plaques, tau tangles, and behavioral impairments that lead to neuronal death. A substantial number of studies encourage targeting the skewness in the production and degradation of amyloid-β could be among the promising therapies in the disease. Neuronal autophagy has emerged for an essential role in the degradation of such toxic aggregate-prone proteins in various neurodegenerative diseases. We profiled a small library of common dietary compounds and identified those that can enhance autophagy in neuronal cells. Here we noted naringenin in silico exhibits a robust affinity with AMP-activated protein kinase (AMPK) and upregulated AMPK-mediated autophagy signaling in neurons. Naringenin can induce autophagy promoting proteins such as ULK1, Beclin1, ATG5, and ATG7 in Neuro2a cells and primary mouse neurons as well. The knockdown of AMPK by siRNA-AMPK was complemented by naringenin that restored transcript levels of AMPK. Further, naringenin can reduce the levels of Aβ at a nontoxic concentration from neuronal cells. Moreover, it maintained the mitochondrial membrane potential and resisted reactive oxygen species production, which led to the protection against Aβ1–42 evoked neurotoxicity. This highlights the neuroprotective potential of naringenin that can be developed as an anti-amyloidogenic nutraceutical.

Keywords: neuronal cells; mediated autophagy; naringenin; evoked neurotoxicity; ampk mediated

Journal Title: Molecular Neurobiology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.