LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3D graphene/AgBr/Ag cascade aerogel for efficient photocatalytic disinfection

Photo by karsten116 from unsplash

Abstract To design semiconductor-based photocatalysts with efficient charge carriers separation and transfer remains an enduring goal of artificial photosynthesis toward target redox reactions. Herein, we report a cascade monolith composite… Click to show full abstract

Abstract To design semiconductor-based photocatalysts with efficient charge carriers separation and transfer remains an enduring goal of artificial photosynthesis toward target redox reactions. Herein, we report a cascade monolith composite of ternary reduced graphene oxide aerogel/silver bromide/silver (RGA/AgBr/Ag) with efficient charge carriers separation, which exhibits much higher activity than bare AgBr toward photocatalytic bacteria inactivation. Mechanistic studies reveal that the reduced graphene oxide aerogel (RGA) scaffold and Ag nanoparticles serve as electron relay mediators to promote the charge carriers separation and transfer. In addition, the metallic Ag nanoparticles derived from the photoreduction of AgBr during the photocatalytic disinfection can further boost the separation of charge carriers. Control experiments demonstrate that the surface plasmon resonance (SPR)-excited hot electrons of Ag nanoparticles also contribute to enhancing the photoactivity of RGA/AgBr/Ag. As such, the synergy of multiple electron transfer behavior integratively leads to the boosted photocatalytic performance of such RGA/AgBr/Ag aerogel for bacteria inactivation with convenient recyclable operability.

Keywords: photocatalytic disinfection; cascade; agbr; charge carriers; aerogel

Journal Title: Applied Catalysis B: Environmental
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.