LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and synthesis of benzylidenecyclohexenones as TrxR inhibitors displaying high anticancer activity and inducing ROS, apoptosis, and autophagy.

Photo from wikipedia

Oxidative therapy, a strategy that specifically increases reactive oxygen species (ROS) levels in tumor cells by disrupting the redox homeostasis has gained increasing interest. The antitumor effects of the natural… Click to show full abstract

Oxidative therapy, a strategy that specifically increases reactive oxygen species (ROS) levels in tumor cells by disrupting the redox homeostasis has gained increasing interest. The antitumor effects of the natural product piperlongumine (PL) appear to result from its ability to increase intracellular ROS levels via inhibition of antioxidative thioredoxin reductase (TrxR). Twenty-seven benzylidenecyclohexenone-based PL analogues (2a-v and 15a-e) were designed, synthesized and evaluated for their pharmacological properties. Most of the compounds exhibited potent antiproliferative activities against five human cancer cell lines, especially against breast tumor cells. One of the most promising analogueues 2c showed 12-fold higher inhibitory activity against the thioredoxin reductase (TrxR) than PL and surpressed the expression of TrxR1 protein in breast cancer cells and inhibited TrxR enzymatic activity. In addition, 2c increased ROS levels and resulted in marked apoptosis by regulating apoptosis-related proteins expressed in the breast cancer cells. Compound 2c also triggered the formation of autophagosomes and autolysosomes by promoting the expression of LC3-II and Beclin-1 and diminishing the expression of LC3-I and p62 proteins. Finally, 2c displayed low acute toxicity and good inhibitory potency to tumors in mice. Overall, 2c is a promising anti-breast cancer candidate warranting further investigation.

Keywords: design synthesis; apoptosis; breast cancer; ros levels; activity

Journal Title: European journal of medicinal chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.