BACKGROUND Hyperhomocysteinemia was found to be uniformly associated with the development of heart failure (HF) and HF mortality; however, it is uncertain whether this relation is causative or not. We… Click to show full abstract
BACKGROUND Hyperhomocysteinemia was found to be uniformly associated with the development of heart failure (HF) and HF mortality; however, it is uncertain whether this relation is causative or not. We used Mendelian randomization to examine the associations of the methylene tetrahydrofolate gene (MTHFR) and paraoxonase 1 gene (PON1) variants as a proxy for lifelong exposure to high Hcy and Hcy-thiolactone concentrations with the development of HF in men aged ≤60years and the occurrence of adverse effects at one-year follow-up. METHODS The study enrolled 172 men with HF: 117 with ischemic etiology (iHF) related to coronary artery disease (CAD) and 55 with non-ischemic etiology (niHF) related to dilated cardiomyopathy (DCM). The reference group of 329 CAD patients without HF and the control group of 384 men were also analyzed. RESULTS Hyperhomocysteinemia (OR=2.0, P<0.05) and the MTHFR 677TT/1298AA, 677CC/1298CC genotypes (OR=1.6, P=0.03) were associated with HF regardless of its etiology, especially among normotensives (OR=4.6, P=0.001 and OR=2.3, P=0.003, respectively). In niHF, the PON1 162AA (OR=2.3, P=0.03) and 575AG+GG (OR=0.46, P=0.01) genotypes also influenced the risk. The interaction between HDLC<1mmol/L and the PON1 575GG genotype was found to influence the risk of iHF (OR=7.2, P=0.009). Hyperhomocysteinemia improved the classification of niHF patients as 'high-risk' by 10.1%. Ejection fraction <30% and DCM increased the probability of HF death or re-hospitalization within one year. CONCLUSION Our results provide evidence that hyperhomocysteinemia is a causal factor for niHF in DCM, while dysfunctional HDL could contribute to the pathogenesis of iHF.
Click one of the above tabs to view related content.