Cryo-electron tomography (cryo-ET) is an emerging technique to study the cellular architecture and the structure of proteins at high resolution in situ. Most biological specimens are too thick to be… Click to show full abstract
Cryo-electron tomography (cryo-ET) is an emerging technique to study the cellular architecture and the structure of proteins at high resolution in situ. Most biological specimens are too thick to be directly investigated and are therefore thinned by milling with a focused ion beam under cryogenic conditions (cryo-FIB). This procedure is prone to contaminations, which makes it a tedious process, often leading to suboptimal results. Here, we present new hardware that overcomes the current limitations. We developed a new glove box and a high vacuum cryo transfer system and installed a stage heater, a cryo-shield and a cryo-shutter in the FIB milling microscope. This reduces the ice contamination during the transfer and milling process and simplifies the handling of the sample. In addition, we tested a new software application that automates the key milling steps. Together, these improvements allow for high-quality, high-throughput cryo-FIB milling. This paves the way for new types of experiments, which have been previously considered infeasible.
Click one of the above tabs to view related content.