LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Diffusive tail anchorage determines velocity and force produced by kinesin-14 between crosslinked microtubules

Photo by riley3dwards from unsplash

Form and function of the mitotic spindle depend on motor proteins that crosslink microtubules and move them relative to each other. Among these are kinesin-14s, such as Ncd, which interact… Click to show full abstract

Form and function of the mitotic spindle depend on motor proteins that crosslink microtubules and move them relative to each other. Among these are kinesin-14s, such as Ncd, which interact with one microtubule via their non-processive motor domains and with another via their diffusive tail domains, the latter allowing the protein to slip along the microtubule surface. Little is known about the influence of the tail domains on the protein’s performance. Here, we show that diffusive anchorage of Ncd’s tail domains impacts velocity and force considerably. Tail domain slippage reduced velocities from 270 nm s−1 to 60 nm s−1 and forces from several piconewtons to the sub-piconewton range. These findings challenge the notion that kinesin-14 may act as an antagonizer of other crosslinking motors, such as kinesin-5, during mitosis. It rather suggests a role of kinesin-14 as a flexible element, pliantly sliding and crosslinking microtubules to facilitate remodeling of the mitotic spindle.Kinesin-14s, such as Ncd, interact with microtubules with their non-processive motor domains and their diffusive tail domains, but the influence of the tail domains on motor performance is not known. Here the authors show that tail domain slippage limits the velocities and forces generated by Ncd, suggesting it acts as a slippery crosslinker.

Keywords: velocity force; diffusive tail; anchorage; tail; tail domains; kinesin

Journal Title: Nature Communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.