LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

FCC to BCC transformation-induced plasticity based on thermodynamic phase stability in novel V10Cr10Fe45CoxNi35−x medium-entropy alloys

Photo from wikipedia

We introduce a novel transformation-induced plasticity mechanism, i.e., a martensitic transformation from fcc phase to bcc phase, in medium-entropy alloys (MEAs). A VCrFeCoNi MEA system is designed by thermodynamic calculations… Click to show full abstract

We introduce a novel transformation-induced plasticity mechanism, i.e., a martensitic transformation from fcc phase to bcc phase, in medium-entropy alloys (MEAs). A VCrFeCoNi MEA system is designed by thermodynamic calculations in consideration of phase stability between bcc and fcc phases. The resultantly formed bcc martensite favorably contributes to the transformation-induced plasticity, thereby leading to a significant enhancement in both strength and ductility as well as strain hardening. We reveal the microstructural evolutions according to the Co-Ni balance and their contributions to a mechanical response. The Co-Ni balance plays a leading role in phase stability and consequently tunes the cryogenic-temperature strength-ductility balance. The main difference from recently-reported metastable high-entropy dual-phase alloys is the formation of bcc martensite as a daughter phase, which shows significant effects on strain hardening. The hcp phase in the present MEA mostly acts as a nucleation site for the bcc martensite. Our findings demonstrate that the fcc to bcc transformation can be an attractive route to a new MEA design strategy for improving cryogenic strength-ductility.

Keywords: phase; transformation induced; transformation; bcc; phase stability; induced plasticity

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.