LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rice 3D chromatin structure correlates with sequence variation and meiotic recombination rate

Photo from wikipedia

Genomes of many eukaryotic species have a defined three-dimensional architecture critical for cellular processes. They are partitioned into topologically associated domains (TADs), defined as regions of high chromatin inter-connectivity. While… Click to show full abstract

Genomes of many eukaryotic species have a defined three-dimensional architecture critical for cellular processes. They are partitioned into topologically associated domains (TADs), defined as regions of high chromatin inter-connectivity. While TADs are not a prominent feature of A. thaliana genome organization, they have been reported for other plants including rice, maize, tomato and cotton and for which TAD formation appears to be linked to transcription and chromatin epigenetic status. Here we show that in the rice genome, sequence variation and meiotic recombination rate correlate with the 3D genome structure. TADs display increased SNP and SV density and higher recombination rate compared to inter-TAD regions. We associate the observed differences with the TAD epigenetic landscape, TE composition and an increased incidence of meiotic crossovers. Golicz et al. report an increase in single nucleotide polymorphisms and structural variations across and within Topologically Associated Domains (TADs) in the rice genome, which is different to the pattern observed in the human genome. They show that this may be due to epigenetic modifications, transposable elements composition, and meiotic crossovers in the TAD regions.

Keywords: sequence variation; chromatin; variation meiotic; recombination rate

Journal Title: Communications Biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.