LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanoscale control of LaAlO3/SrTiO3 metal–insulator transition using ultra-low-voltage electron-beam lithography

Photo from wikipedia

We describe a method to control the insulator-metal transition at the LaAlO3/SrTiO3 interface using ultra-low-voltage electron beam lithography (ULV-EBL). Compared with previous reports that utilize conductive atomic-force-microscope lithography (c-AFM), this… Click to show full abstract

We describe a method to control the insulator-metal transition at the LaAlO3/SrTiO3 interface using ultra-low-voltage electron beam lithography (ULV-EBL). Compared with previous reports that utilize conductive atomic-force-microscope lithography (c-AFM), this approach can provide comparable resolution (~10 nm) at write speeds (10 mm/s) that are up to 10,000x faster than c-AFM. The writing technique is non-destructive and the conductive state is reversible via prolonged exposure to air. Transport properties of representative devices are measured at milli-Kelvin temperatures, where superconducting behavior is observed. We also demonstrate the ability to create conducting devices on graphene/LaAlO3/SrTiO3 heterostructures. The underlying mechanism is believed to be closely related to the same mechanism regulating c-AFM-based methods.

Keywords: low voltage; using ultra; srtio3; ultra low; lithography; laalo3 srtio3

Journal Title: Applied Physics Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.