LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DgbZIP3 interacts with DgbZIP2 to increase the expression of DgPOD for cold stress tolerance in chrysanthemum

Photo by kellysikkema from unsplash

Abstract The bZIP transcription factor plays a very important role in abiotic stresses, e.g. drought, salt, and low-temperature stress, but the mechanism of action at low temperature is still unclear.… Click to show full abstract

Abstract The bZIP transcription factor plays a very important role in abiotic stresses, e.g. drought, salt, and low-temperature stress, but the mechanism of action at low temperature is still unclear. In this study, overexpression of DgbZIP3 led to increased tolerance of chrysanthemum (Chrysanthemum morifolium Ramat.) to cold stress, whereas antisense suppression of DgbZIP3 resulted in decreased tolerance. Electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), luciferase complementary imaging analysis (LCI), and dual-luciferase reporter gene detection (DLA) experiments indicated that DgbZIP3 directly bound to the promoter of DgPOD and activated its expression. DgbZIP2 was identified as a DgbZIP3-interacting protein using yeast two-hybrid, co-immunoprecipitation, LCI, and bimolecular fluorescence complementation assays. Overexpression of DgbZIP2 led to increased tolerance of chrysanthemum to cold stress, whereas antisense suppression of DgbZIP2 resulted in decreased tolerance. A ChIP–qPCR experiment showed that DgbZIP2 was highly enriched in the promoter of DgPOD, while DLA, EMSA, and LCI experiments further showed that DgbZIP2 could not directly regulate the expression of DgPOD. The above results show that DgbZIP3 interacts with DgbZIP2 to regulate the expression of DgPOD to promote an increase in peroxidase activity, thereby regulating the balance of reactive oxygen species and improving the tolerance of chrysanthemum to low-temperature stress.

Keywords: tolerance chrysanthemum; dgpod; stress; expression; tolerance

Journal Title: Horticulture Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.