This study aimed to explore the key microRNA (miRNA) playing a vital role in axonal regeneration with a hostile microenvironment after spinal cord injury. Based on the theory that sciatic… Click to show full abstract
This study aimed to explore the key microRNA (miRNA) playing a vital role in axonal regeneration with a hostile microenvironment after spinal cord injury. Based on the theory that sciatic nerve conditioning injury (SNCI) could promote the repair of the injured dorsal column. Differentially expressed miRNAs were screened according to the microarray, revealing that 47 known miRNAs were differentially expressed after injury and perhaps involved in nerve regeneration. Among the 47 miRNAs, the expression of miR-221-3p decreased sharply in the SNCI group compared with the simple dorsal column lesion (SDCL) group. Subsequently, it was confirmed that p27 was the target gene of miR-221-3p from luciferase reporter assay. Further, we found that inhibition of miR-221-3p expression could specifically target p27 to upregulate the expression of growth-associated protein 43 (GAP-43), α-tubulin acetyltransferase (α-TAT1) together with α-tubulin, and advance the regeneration of dorsal root ganglion (DRG) neuronal axons. Chondroitin sulfate proteoglycans (CSPGs) are the main components of glial scar, which can hinder the extension and growth of damaged neuronal axons. After CSPGs were used in this study, the results demonstrated that restrained miR-221-3p expression also via p27 promoted the upregulation of GAP-43, α-TAT1, and α-tubulin and enhanced the axonal growth of DRG neurons. Hence, miR-221-3p could contribute significantly to the regeneration of DRG neurons by specifically regulating p27 in the p27/CDK2/GAP-43 and p27/α-TAT1/α-tubulin pathways even in the inhibitory environment with CSPGs.
               
Click one of the above tabs to view related content.