Parafoil systems are strongly nonlinear due to the flexibility of the canopy and suspension lines, and this characteristic cannot be simulated accurately by existing dynamic models. Hence, model-independent control methods… Click to show full abstract
Parafoil systems are strongly nonlinear due to the flexibility of the canopy and suspension lines, and this characteristic cannot be simulated accurately by existing dynamic models. Hence, model-independent control methods are necessary for parafoil systems. This paper introduces a model-free adaptive control method based on the iterative feedback tuning (IFT-MFAC) method for parafoil systems that is a data-driven control method in which only input/output (I/O) data are needed during construction. In this paper, the MFAC construction process and stability analysis are explained, and then the IFT method is used to tune the two stepping factors of the MFAC method. A six-degree-of-freedom (DOF) dynamic parafoil system model is built to assess the performance of the method in a simulation with disturbances added to imitate real flights. A series of simulations and hardware-in-loop (HIL) tests are designed to verify the performance of the IFT-MFAC controller, and it is compared with the PID control method, the active disturbance rejection control (ADRC) method, and the MFAC method.
Click one of the above tabs to view related content.