LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Repair Mechanism of Radiation-Induced Salivary Gland Injury by Hypoxia-Pretreated Human Urine - Derived Stem Cell Exosomes.

Photo by nci from unsplash

OBJECTIVE To explore the protective effect of human urine-derived stem cell exosomes (hUSC-Exos) on radiation-induced salivary gland (SG) injuries in Sprague Dawley rats. METHODS Fresh adult urine was collected, and… Click to show full abstract

OBJECTIVE To explore the protective effect of human urine-derived stem cell exosomes (hUSC-Exos) on radiation-induced salivary gland (SG) injuries in Sprague Dawley rats. METHODS Fresh adult urine was collected, and primary hUSCs were isolated and identified. The hUSCs were hypoxia pretreated with 1% oxygen for 24 h and then transferred to a normoxic culture environment for 24 h. The hUSC-Exos were collected and identified for exosomes. A radiation-induced injury model was established in the rats, and exosomes were introduced by local injection in the SG and tail vein. The submandibular gland was excised for morphological observation one week later. Immunohistochemical detection of the glandular tissue was conducted by α-smooth muscle actin (a-SMA), stem cell growth factor receptor (c-Kit) staining, and periodic acid-Schiff staining. Qualitative polymerase chain reaction and western blot analysis were adopted to detect the gene and protein expression of Wnt3a, GSK3β, and Axin. RESULTS In both the normoxic and hypoxic hUSC-Exo groups, microvesicular structures with bilayer membranes of approximately 80 nm in diameter were detected, and the expressions of CD9 and CD63 were detected by nanoflow cytometry. Compared with the control group, in the radiation-induced injury model group, the expression of a-SMA was significantly higher, the expression of c-Kit was significantly lower, and the expressions of Wnt3a, GSK3β, and Axin were significantly upregulated; the differences were statistically significant (P < 0.05). Compared with the model group, in the normoxic and hypoxic hUSC-Exo groups, the expression of a-SMA was significantly decreased, the expression of c-Kit was significantly increased, and the expressions of Wnt3a, GSK3β, and Axin were significantly upregulated; the differences were statistically significant (P < 0.05). CONCLUSION Hypoxia-pretreated hUSC-Exos could repair radiation-induced SG injuries by activating the Wnt3a/GSK3β pathway to suppress the expressions of a-SMA and c-Kit.

Keywords: urine; stem cell; hypoxia pretreated; radiation; radiation induced

Journal Title: Oral diseases
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.