Random Phase Encoding (RPE) techniques for image encryption have drawn increasing attention during the past decades. We demonstrate in this contribution that the RPE-based optical cryptosystems are vulnerable to the… Click to show full abstract
Random Phase Encoding (RPE) techniques for image encryption have drawn increasing attention during the past decades. We demonstrate in this contribution that the RPE-based optical cryptosystems are vulnerable to the chosen-plaintext attack (CPA) with deep learning strategy. A deep neural network (DNN) model is employed and trained to learn the working mechanism of optical cryptosystems, and finally obtaining a certain optimized DNN that acts as a decryption system. Numerical simulations were carried out to verify its feasibility and reliability of not only the classical Double RPE (DRPE) scheme but also the security-enhanced Tripe RPE (TRPE) scheme. The results further indicate the possibility of reconstructing images (plaintexts) outside the original data set.
               
Click one of the above tabs to view related content.