LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Degradation mechanisms of perovskite nanocrystals in color-converted InGaN micro-light-emitting diodes.

Photo from wikipedia

The metal halide perovskite nanocrystals (NCs) have attracted much attention because of their excellent optical properties and potential for application in optoelectronic devices. However, their photo- and thermostability are still… Click to show full abstract

The metal halide perovskite nanocrystals (NCs) have attracted much attention because of their excellent optical properties and potential for application in optoelectronic devices. However, their photo- and thermostability are still practical challenges and need further optimization. Here, we have studied the degradation behaviors of CsPbI3 NCs utilized as optical conversion layer in InGaN based blue micro-LEDs in situ. Furthermore, the effects of temperature and light irradiation on perovskite NCs were investigated respectively. The results indicate that both blue light irradiation and high temperature can cause the increased nonradiative recombination rate, resulting in the degradation of perovskite NCs and reduction of the photoluminescence quantum yield (PLQY). Especially in high-temperature condition, both the single-exciton nonradiative recombination rate and the biexciton nonradiative recombination rate are increased, causing the significant reduction of PLQY of perovskite NCs in high temperature environment than blue light irradiation. Our work provides a detailed insight about the correlation between the light irradiation and temperature consequences for CsPbI3 NCs and may help to pave the way toward optoelectronic device applications.

Keywords: perovskite nanocrystals; perovskite ncs; temperature; light irradiation; degradation

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.