We model the generation of vortex modes in exciton-polariton condensates in semiconductor micropillars, arranged into a hexagonal ring molecule, in the presence of TE-TM splitting. This splitting lifts the degeneracy… Click to show full abstract
We model the generation of vortex modes in exciton-polariton condensates in semiconductor micropillars, arranged into a hexagonal ring molecule, in the presence of TE-TM splitting. This splitting lifts the degeneracy of azimuthally modulated vortex modes with opposite topological charges supported by this structure, so that a number of non-degenerate vortex states characterized by different combinations of topological charges in two polarization components appears. We present a full bifurcation picture for such vortex modes and show that because they have different energies they can be selectively excited by coherent pump beams with specific frequencies and spatial configurations. At high pumping intensity, polariton-polariton interactions give rise to the coupling of different vortex resonances and a bistable regime is achieved.
               
Click one of the above tabs to view related content.