LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrolysing the soluble protein secreted by Escherichia coli in trans-4-hydroxy-L-proline fermentation increased dissolve oxygen to promote high-level trans-4-hydroxy-L-proline production

Photo by nci from unsplash

ABSTRACT Trans-4-hydroxy-L-proline (Hyp) production by Escherichia coli (E. coli) in fermentation is a high-oxygen-demand process. E. coli secretes large amounts of soluble protein, especially in the anaphase of fermentation, which… Click to show full abstract

ABSTRACT Trans-4-hydroxy-L-proline (Hyp) production by Escherichia coli (E. coli) in fermentation is a high-oxygen-demand process. E. coli secretes large amounts of soluble protein, especially in the anaphase of fermentation, which is an important factor leading to inadequate oxygen supply. And acetic acid that is the major by-product of Hyp production accumulates under low dissolved oxygen (DO). To increase DO and achieve high-level Hyp production, soluble protein was hydrolysed by adding protease in Hyp fermentation. The optimal protease, concentration, and addition time were trypsin, 0.2 g/L, and 18 h, respectively. With the addition of trypsin, the soluble protein in Hyp fermentation decreased by 43.5%. The DO could be maintained at 20–30% throughout fermentation. Hyp production and glucose conversion rate were 45.3 g/L and 18.1%, which were increases of 24.1% and 8.4%, respectively. The accumulation of acetic acid was decreased by 52.1%. The metabolic flux of Hyp was increased by 44.2% and the flux of acetate was decreased by 51.0%.

Keywords: soluble protein; production; fermentation; hyp; trans hydroxy; hydroxy proline

Journal Title: Bioengineered
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.