LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Therapeutic potential of d-cysteine against in vitro and in vivo models of spinocerebellar ataxia

Photo from wikipedia

Spinocerebellar ataxia (SCA) is a group of autosomal-dominantly inherited ataxia and is classified into SCA1-48 by the difference of causal genes. Several SCA-causing proteins commonly impair dendritic development in primary… Click to show full abstract

Spinocerebellar ataxia (SCA) is a group of autosomal-dominantly inherited ataxia and is classified into SCA1-48 by the difference of causal genes. Several SCA-causing proteins commonly impair dendritic development in primary cultured Purkinje cells (PCs). We assume that primary cultured PCs expressing SCA-causing proteins are available as in vitro SCA models and that chemicals that improve the impaired dendritic development would be effective for various SCAs. We have recently revealed that D-cysteine enhances the dendritic growth of primary cultured PCs via hydrogen sulfide production. In the present study, we first investigated whether D-cysteine is effective for in vitro SCA models. We expressed SCA1-, SCA3-, and SCA21-causing mutant proteins to primary cultured PCs using adeno-associated viral serotype 9 (AAV9) vectors. D-Cysteine (0.2 mM) significantly ameliorated the impaired dendritic development commonly observed in primary cultured PCs expressing these three SCA-causing proteins. Next, we investigated the therapeutic effect of long-term treatment with D-cysteine on an in vivo SCA model. SCA1 model mice were established by the cerebellar injection of AAV9 vectors, which express SCA1-causing mutant ataxin-1, to ICR mice. Long-term treatment with D-cysteine (100 mg/kg/day) significantly inhibited the progression of motor dysfunction in SCA1 model mice. Immunostaining experiments revealed that D-cysteine prevented the reduction of mGluR1 and glial activation at the early stage after the onset of motor dysfunction in SCA1 model mice. These findings strongly suggest that D-cysteine has therapeutic potential against in vitro and in vivo SCA models and may be a novel therapeutic agent for various SCAs.

Keywords: spinocerebellar ataxia; vivo; cysteine; sca; vitro; primary cultured

Journal Title: Experimental Neurology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.